Development of High Performance OLED materials and Current Progress

October 9th, 2012

Yuichiro Kawamura
Electronic Materials Department
Idemitsu Kosan Co., Ltd.
Sodegaura, Chiba, Japan
1. Approach for enhancing OLED performance

2. Materials for highly efficient fluorescent blue

3. Further improvement of device performance
 3-1 Triplet – Triplet Fusion
 3-2 Capping Layer

4. Development of Phosphorescent host

5. Summary
1. Approach for enhancing OLED performance

2. Materials for highly efficient fluorescent blue

3. Further improvement of device performance
 3-1 Triplet – Triplet Fusion
 3-2 Capping Layer

4. Development of Phosphorescent host

5. Summary
1. Approach for Enhancing OLED Performance

Application of OLEDs need to improve their power consumption much more. ⇒ Efficiency of a blue pixel would control whole efficiency of OLEDs.

TV specification by EnergyStar

Performance Improvement Curves for OLED by EnergyStar

http://www.energystar.gov/index.cfm?c=revisions.television_spec

1. Approach for Enhancing OLED Performance

General approach to improve power of OLED

Efficacy (lm/W) \(\eta = \frac{[IQE] \times [\text{Outcoupling Efficiency}]}{[\text{Driving Voltage}]} \)
1. Approach for enhancing OLED Performance

High efficiency with keeping long lifetime is important.

Device simulation results of typical blue device

ITO / HI / HT / BH:BD / ET / LiF / Al

60 20 40;5% 20 1 (nm)

- Thermal and electro-chemical stability of materials
- Excitation stability of emitting materials
- Material combination to optimize carrier balance in emitting layer
1. Approach for enhancing OLED performance

2. Materials for highly efficient fluorescent blue

3. Further improvement of device performance
 3-1 Triplet – Triplet Fusion
 3-2 Capping Layer

4. Development of Phosphorescent host

5. Summary
BD-7 was achieved the CIEy of 0.08 for NTSC blue.
Materials for Highly Efficient Fluorescent Blue Device Structure

2008

<table>
<thead>
<tr>
<th>Dopant</th>
<th>CIE(x,y)</th>
<th>L/J(cd/A) @10mA/cm²</th>
<th>LT50 (hrs) @L₀=1000cd/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD-4</td>
<td>(0.14, 0.13)</td>
<td>6.5</td>
<td>11,000</td>
</tr>
<tr>
<td>BD-5*</td>
<td>(0.13, 0.21)</td>
<td>8.4</td>
<td>50,000</td>
</tr>
</tbody>
</table>

2009

| BD-6 | (0.15, 0.12) | 7.1 | 8,000 |
Materials for Highly Efficient Fluorescent Blue Device Structure

Device Structure: ITO / HI-2 / HT-2 / BH-1: **BD-7* / ET-6 / LiF / Al**

<table>
<thead>
<tr>
<th>2011</th>
<th>Dopant</th>
<th>CIE(x,y)</th>
<th>L/J(cd/A) @10mA/cm²</th>
<th>LT50 (hrs) @L₀=500cd/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD-7*</td>
<td>(0.14, 0.08)</td>
<td>5.5</td>
<td>11,000</td>
<td></td>
</tr>
</tbody>
</table>

NTSC Blue
1. Approach for enhancing OLED performance

2. Materials for highly efficient fluorescent blue

3. Further improvement of device performance
 3-1 Triplet – Triplet Fusion
 3-2 Capping Layer

4. Development of Phosphorescent host

5. Summary
3. Further Improvement of Fluorescent Device

Recombination Process of Fluorescent Devices

Cathode → Electron → Recombination → Hole → Anode

Fluorescent device

25% → Singlet exciton → Fluorescence 25%

75% → Triplet exciton → Heat (vibration, rotation) 75%
3. Further Improvement of Fluorescent Device

Approach

- Cathode → Electron → Hole → Anode
- Recombination
- Exciton
 - Singlet exciton (25%)
 - Triplet exciton (75%)

Fluorescent device

- High efficiency to exceed the theoretical limit
 - Triplet-Triplet Fusion

- Improvement of out-coupling (Top emission OLED)
 - Capping Layer
Typical External Quantum Efficiency of fluorescence

\[\eta_{ex} = \frac{1}{2\pi} \int_{\theta_c}^\infty d\Omega = \frac{1}{2\pi} \int_0^{2\pi} \int_0^{\theta_c} \sin \theta d\theta d\varphi = \frac{1}{2\pi} \cdot 2\pi \int_0^{\theta_c} \sin \theta d\theta \]

\[= 1 - \cos \theta_c = 1 - \sqrt{1 - \frac{1}{n^2}} \]

\(\eta_{ex} = 0.15 \sim 0.20 \) (if \(n = 1.7 \sim 2.0 \))

IQE = 100% (Phosphorescence) \(\rightarrow \) EQE = 20%

IQE = 25% (Fluorescence) \(\rightarrow \) EQE = 5%
3-1. Triplet-Triplet Fusion

What is TTF?

Triplet-Triplet Fusion
- Phosphorescence ➢ Decrease efficiency
- Fluorescence ➢ Increase efficiency

⇒ Triplet-Triplet Fusion

Excitons

Singlet Excitons

Ground State

Delayed fluorescence

Intersystem Crossing
3-1. Triplet-Triplet Fusion

Study of TTF ~ Transient EL

Measurement system

```
PG : Pulse Generator
OSC : Oscilloscope
PMT : Photo-multiplier
EL : OLED device
```

Rate equation of TTF

\[
\dot{n}_T = -\alpha \cdot n_T - \gamma \cdot n_T^2
\]

- **Simple Triplet decay**
- **Decay by T-T collision**

\[
n_T = \frac{\alpha \exp(-\alpha(t + t_0))}{\gamma(1 - \exp(-\alpha(t + t_0)))}
\]

\[
\approx \frac{1}{\gamma(t + t_0)} \quad \text{for small } t
\]

\[
\begin{align*}
I_s & \propto \int n_s \, dx \\
I_{T-T} & \propto \int n_T^2 \, dx
\end{align*}
\]

\[
\frac{1}{\sqrt{I_{T-T}}} \propto A + \gamma \cdot t
\]
3-1. Triplet-Triplet Fusion

Discovery of Triplet-Triplet Fusion (TTF)

Device Structure: ITO / HI / HT / RH-1: RD-2 / ET-1 / LiF / Al

EQE = 8.4% > 5%

The pattern is almost a Lambertian.

High efficiency originates in the red materials.

2006
3-1. Triplet-Triplet Fusion

Discovery of Triplet-Triplet Fusion (TTF)

Device Structure: ITO / HI / HT / RH-1: RD-2 / ET-1 / LiF / Al

Transient EL decay

- Ordinary EL decay
- Delayed EL

Voltage Off

\[
\frac{1}{\sqrt{I_{T-T}}} \propto A + \gamma \cdot t
\]

IQE = 34% >> 25%
3-1. Triplet-Triplet Fusion

Application of TTF to Blue

Efficiency Enhancement Layer (EEL) for Blue

\[3A^* + 3A^* \rightarrow (4/9)1A + (1/9)1A^* + (13/9)3A^* \]

⇒ One Singlet-exciton \((^1A^*)\) regenerates from Five Triplet-excitons \((^3A^*)\).

The Confinement of Triplet excitons can enhance TTF in EML
3-1. Triplet-Triplet Fusion

Efficiency Enhancement Layer (EEL) for Blue

Feature of EEL materials
- High electron mobility, suitable electron affinity (for lower voltage)
- Durability against hole and electron (for longer lifetime)
3-1. Triplet-Triplet Fusion

Blue devices with EEL

Device Structure: ITO / HI-2 / HT-2 / BH-1: BD / ET-6 / LiF / Al

<table>
<thead>
<tr>
<th>Dopant</th>
<th>Voltage(V)</th>
<th>CIE(x,y)</th>
<th>L/J(cd/A)</th>
<th>EQE(%)</th>
<th>LT50 (hrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD-6</td>
<td>3.8</td>
<td>(0.15, 0.12)</td>
<td>7.1</td>
<td>6.8</td>
<td>8,000</td>
</tr>
<tr>
<td>BD-7*</td>
<td>3.9</td>
<td>(0.14, 0.08)</td>
<td>5.5</td>
<td>7.1</td>
<td>10,000</td>
</tr>
</tbody>
</table>

Inserting EEL

Device Structure: ITO / HI-2 / HT-2 / BH-1: BD / EEL-2 / ET-6 / LiF / Al

<table>
<thead>
<tr>
<th>Dopant</th>
<th>Voltage(V)</th>
<th>CIE(x,y)</th>
<th>L/J(cd/A)</th>
<th>EQE(%)</th>
<th>LT50 (hrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD-6</td>
<td>3.8</td>
<td>(0.15, 0.12)</td>
<td>9.0</td>
<td>8.7</td>
<td>11,000</td>
</tr>
<tr>
<td>BD-7*</td>
<td>3.8</td>
<td>(0.14, 0.08)</td>
<td>6.5</td>
<td>8.7</td>
<td>9,000</td>
</tr>
</tbody>
</table>
Blue devices with EEL

Transmit EL of blue devices

BH-1:BD-6 devices

- Increase of delayed fluorescence by inserting EEL
 → Higher efficiency

EL emission originated from triplet excitons increased in the device with EEL

3-1. Triplet-Triplet Fusion
3-1. Triplet-Triplet Fusion

Current Status of Fluorescent Blue

<table>
<thead>
<tr>
<th>Device Structure</th>
<th>ITO / HI-2 / HT-2 / BH-1: BD-7* / EEL-2 / ET-6 / LiF / Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td></td>
</tr>
<tr>
<td>Dopant</td>
<td>BD-7*</td>
</tr>
<tr>
<td>CIE(x,y)</td>
<td>(0.14, 0.08)</td>
</tr>
<tr>
<td>L/J(cd/A)</td>
<td>6.5</td>
</tr>
<tr>
<td>EQE(%)</td>
<td>8.7</td>
</tr>
<tr>
<td>LT50 (hrs)</td>
<td>9,000</td>
</tr>
<tr>
<td>LT50 (hrs)</td>
<td>@L_0=500cd/m^2</td>
</tr>
<tr>
<td>@10mA/cm^2</td>
<td></td>
</tr>
<tr>
<td>*Under development</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>Dopant</td>
<td>BD-8*</td>
</tr>
<tr>
<td>CIE(x,y)</td>
<td>(0.14, 0.08)</td>
</tr>
<tr>
<td>L/J(cd/A)</td>
<td>7.1</td>
</tr>
<tr>
<td>EQE(%)</td>
<td>9.3</td>
</tr>
<tr>
<td>LT50 (hrs)</td>
<td>11,000</td>
</tr>
</tbody>
</table>

A newly developed material BD-8 showed high efficiency with good CIEy.
3-2. Capping Layer

Function of the capping layer

- **Top emission device**
 - **Merits**
 a. Peak intensity and high color purity by Micro-cavity structure
 b. High aperture ratio
 - **Issues**
 Surface Plasmon coupling by metal electrode causes a Quenching seriously.

To avoid the quenching, the application of a capping layer was demonstrated.
IK focused on the material for capping layer which has the function of suppressing SPP mode.
3-2. Capping Layer

Newly developed capping layer CL-1

Efficiency of the TE device was dramatically improved with using CL-1.
3-2. Capping Layer

Newly developed capping layer **CL-1**

<table>
<thead>
<tr>
<th>Device Structure</th>
<th>Anode / HI-2 / HT-4 / Blue / EEL / ET-4 / LiF / Mg:Ag / CL-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td>Initial Lumin. (cd/m²)</td>
</tr>
<tr>
<td>Flu. Blue</td>
<td>500</td>
</tr>
</tbody>
</table>

The device capped by CL-1 showed much enhanced L/J value of 8.8 and CIEy of 0.06.
RGB device with common layer

Device Structure: Anode / HI-2* / HT / Green / EEL / ET / LiF / Mg:Ag / CL-1 (Common Layers)

<table>
<thead>
<tr>
<th>Device</th>
<th>Initial Lumin. (cd/m²)</th>
<th>Voltage (V)</th>
<th>CIEy</th>
<th>CIEy</th>
<th>L/J (cd/A)</th>
<th>LT95 (hrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flu. Blue</td>
<td>500</td>
<td>3.8</td>
<td>0.13</td>
<td>0.061</td>
<td>8.8</td>
<td>750</td>
</tr>
<tr>
<td>Phos. Green**</td>
<td>5,000</td>
<td>3.5</td>
<td>0.24</td>
<td>0.72</td>
<td>105</td>
<td>>1,000</td>
</tr>
<tr>
<td>Phos. Red**</td>
<td>2,500</td>
<td>3.5</td>
<td>0.67</td>
<td>0.33</td>
<td>40</td>
<td>>2,000</td>
</tr>
</tbody>
</table>

Cavity lengths for each color were controlled by thickness of HI.

Phosphorescent emitters provided by Universal Display Corp under the joint development program.

![Common Layers](image)
3-2. Capping Layer

Simulated Power of 4.0” WVGA OLED

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of pixels</td>
<td>800 x 480 x RGB</td>
</tr>
<tr>
<td>Pixel pitch</td>
<td>0.11 mm x 0.11 mm</td>
</tr>
<tr>
<td>Brightness</td>
<td>350 cd/m²</td>
</tr>
<tr>
<td>CIE coordinates (White)</td>
<td>(0.29, 0.30)</td>
</tr>
<tr>
<td>Driving conditions</td>
<td>Duty = 1</td>
</tr>
<tr>
<td></td>
<td>100% on</td>
</tr>
</tbody>
</table>

Assumption:
4.0” WVGA panel (Top Emission)

- 3-color side-by-side configuration, polarizer (transparency 42%) is used.
- Power Consumption:
 Voltage of TFT = 3.5V
- Display gamma:
 \(\gamma = 2.0 \)
- Picture source:
 IEC 62087 Edition 2.0 (2008-10)
 (Average Y level = 23%)

Power consumption (100% Full white) : 750 mW
Power consumption (Picture image ave.) : 167 mW
1. Approach for enhancing OLED performance

2. Materials for highly efficient fluorescent blue

3. Further improvement of device performance
 3-1 Triplet – Triplet Fusion
 3-2 Capping Layer

4. Development of Phosphorescent host

5. Summary
In phosphorescent devices with metal complex dopants, the emission from T_1 is observed. Allowing S_1 to T_1 energy transfer through intersystem crossing, a theoretical internal quantum efficiency is 100%!
4. Development of Phosphorescent Host

Host materials for Green phosphorescent devices

2010

<table>
<thead>
<tr>
<th>Host</th>
<th>ETL</th>
<th>Voltage(V)</th>
<th>CIE(x,y)</th>
<th>L/J(cd/A)</th>
<th>EQE(%)</th>
<th>LT50 (hrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGH-2*</td>
<td>ET-4</td>
<td>3.5</td>
<td>(0.33, 0.63)</td>
<td>63.9</td>
<td>17.2</td>
<td>200,000</td>
</tr>
</tbody>
</table>

*Phosphorescent emitter, PGD kindly provided by Universal Display Corporation under the joint development program.

2011

<table>
<thead>
<tr>
<th>Host</th>
<th>ETL</th>
<th>Voltage(V)</th>
<th>CIE(x,y)</th>
<th>L/J(cd/A)</th>
<th>EQE(%)</th>
<th>LT50 (hrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGH-3*</td>
<td>ET-4</td>
<td>3.3</td>
<td>(0.33, 0.63)</td>
<td>73.9</td>
<td>19.8</td>
<td>230,000</td>
</tr>
</tbody>
</table>

*Under development
4. Development of Phosphorescent Host

Host materials for Green phosphorescent devices

PGH-3 reduces efficiency drop in the high luminance region.

![Graph showing L/J (cd/A) vs. Luminance (cd/m²)]

- PGH-3:PGD
- PGH-2:PGD

Δ9%
Δ15%
1. Approach for enhancing OLED performance

2. Materials for highly efficient fluorescent blue

3. Further improvement of device performance
 3-1 Triplet – Triplet Fusion
 3-2 Capping Layer

4. Development of Phosphorescent host

5. Summary
1. A newly developed material BD-8 showed a CIE1931 coordinate of (0.14, 0.08) for NTSC compatible blue. It also showed a high current efficiency of 7.1 cd/A with using a new efficiency-enhancement layer which can make triplet-triplet fusion process effectively inside of an emitting layer.

2. We applied the blue materials to top-emission OLEDs. By depositing a new organic capping layer CL-1 on a top cathode, we successfully achieved CIEy of 0.061 and a current efficiency of 8.8 cd/A.

3. We developed a host material PGH-3 for phosphorescent green device that showed a EQE of 19.8% at 1mA/cm2 and long LT50 of 230,000hrs at an initial luminance of 1,000cd/m2.
Idemitsu Kosan Co., Ltd. would like to gratefully acknowledge the contributions of:

- Universal Display Corp.
- Mitsui Chemicals Inc.