Silicon Photonics in Optical Communications

Lars Zimmermann, IHP, Frankfurt (Oder), Germany
Outline

• IHP – who we are
• Silicon photonics
• Photonic-electronic integration
• IHP photonic technology
• Conclusions
IHP in East Brandenburg

1hr east of Berlin.

Rights reserved.
IHP at a Glance

Institute of the Leibniz Association
- 300 people from 22 countries, including 130 scientists
- Founded in 1983
- Owner is the State of Brandenburg

Main Activities
- R & D for wireless and broadband communication, health, security, space and industrial automation with silicon based systems, RF circuits and technologies

Core Competencies
- Design of wireless systems and RF circuits
- Development of modular BiCMOS including RF MEMS and Si Photonics
- New device concepts and materials in technology
- Preparation of prototypes and small series in own pilot line

Rights reserved.
0.25/0.13μm BiCMOS

200mm technology

• regular MPW service
• 24/7 operation
• mixed signal design kit support

<table>
<thead>
<tr>
<th>Year</th>
<th>SG13S</th>
<th>npn13P</th>
<th>npn13V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate Delay (ps)</td>
<td>2.0ps</td>
<td>2.0ps</td>
<td>2.0ps</td>
</tr>
<tr>
<td>fT (GHz)</td>
<td>200/200</td>
<td>300/350</td>
<td>300/300</td>
</tr>
<tr>
<td>fmax (GHz)</td>
<td>70/100</td>
<td>120/140</td>
<td>2.5ps</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>C-Doped SiGe base</th>
<th>Profile optimization</th>
<th>Self aligned & elevated extrinsic base</th>
<th>Low parasitic coll. design</th>
<th>Optimized base link</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rights reserved.
IHP’s focus: More than Moore technologies

IHP: 0.13 µm BiCMOS

Source: ITRS Roadmap 2005

Rights reserved.
Teaming Up!
Joint Lab Silicon Photonics
Why silicon photonics?

Traffic growth

Source: Cisco Systems,

Rights reserved.
Why silicon photonics

Transport networks

SE = spectral efficiency
= per channel bit-rate / channel spacing [bit/s/Hz]

(Source: P. Winzer, Bob Tkach Alcatel-Lucent)

Rights reserved.
Why silicon photonics

Transport networks

• multiplexing
• higher order modulation formats

(Source: P. Winzer, Alcatel-Lucent LEOS Newsletter)

High performance complex coherent TRx technology

Rights reserved.
Why silicon photonics

High-performance computing / data center

Length: ~100m
links: ~5-10K
BW: ~10Gbps/link
Power: ~50mW/Gb/s/link

Price: few$ per Gbps
Reliability!

Source: IBM Bert Offrein

MareNostrum (Barcelona) 62TFlops
About 5000 fiber cables

MareNostrum central switch racks:
About 1700 fiber cables/rack today

Low-cost high-bandwidth short-reach interconnects

Rights reserved.
Why silicon photonics

Fiber to the home (FTTH etc)

Source: Cisco White Paper

Optical network unit etc

Rights reserved.
Why silicon photonics

Radio access networks

Remote radio-head hauling etc

Source: Fujitsu Global

Rights reserved.
Photonic electronic integration

- Future transmission systems should provide
 - Higher power efficiency
 - Lower cost
 - Higher capacity

- Key enabling technology: photonic-electronic integration

Source: 100G Ultra Long Haul DWDM Framework Document, OIF

Rights reserved.
About complexity

Transimpedance amplifier

Most complexity on electronic side

Rights reserved.
Parasitics often dominate achievable bandwidth and drive ability.

Minimizing R, C, L calls for optics really close to the transistors.

Monolithic / frontend-of line photonic electronic integration or Photonic Electronics
Photonic CMOS

SOI-CMOS
- Luxtera (130nm)
- IBM (90nm)

Bulk CMOS with SPE / poly-SOI
- Samsung (65nm)
- MIT/TI (28nm)
Communication ICs

Typical driver IC technologies: GaAs, InP, SiGe

IHP 40Gbit/sec modulator driver
IHP 40Gbit/sec transimpedance amplifier

Figure of merit
breakdown-voltage $\times f_T$

Photonic BiCMOS

Rights reserved.
Photonic BiCMOS?

High performance BiCMOS usually implemented on bulk silicon

1) Fabrication incompatibility

BiCMOS deep sub-collector implant

Source: http://www.iue.tuwien.ac.at/phd/puchner/node48_app.html

Rights reserved.
Photonic BiCMOS?

High-speed electronics power hungry

Driving easily >400mW

Excellent heat dissipation vital for high-speed

2) Buried oxide incompatible with HBT heat dissipation

Heat dissipation through buried oxide (SiO$_2$) 1.4W/mK

Heat dissipation through bulk silicon 149W/mK

Source: Intel

Rights reserved.
Reconciliation – Local SOI

1) Fabrication incompatibility
2) Buried oxide incompatible with HBT heat dissipation

Rights reserved.
IHP SiPh technology

\[\text{signal [dBm]} \]

\[\text{wavelength [µm]} \]

\[220\text{nm} \quad \text{c-SOI} \]

\[65\text{nm} \quad \text{nanorib} \]

Oxide

Rights reserved.
IHP SiPh technology

Linear loss measurements

1.9 dB/cm

-0.35 dB/cm
Fiber coupling - grating couplers

Standard linear

Typically
- -4dB insertion loss
- 30nm 1dB bandwidth

Linear enhanced

Typically
- -1.5dB insertion loss
- 30nm 1dB bandwidth

S. Lischke
Accepted, ACP, Beijing, 2013

Rights reserved.
Germanium photodetectors

Ge waveguide photodiode

Cross section

S. Lischke

Rights reserved.
E/O waveguides for modulators

Phase shift by free carrier dispersion

![Diagram showing phase shift and absorption losses](image)

$\Delta V = 5V$

Rights reserved.
Modulators – resonant structures

S. Meister et al, OPTICS EXPRESS, 2013

U = 3 \ V_{pp}

E = 160 \text{ fJ/bit @ 25Gb/s}

Injection type operation

Rights reserved.
Depletion type MZ modulators

D. Thomson et al, IEEE STQE, 2013

Rights reserved.
Modulator with 10Gbit/sec driver

Phase shift + tuning

Rights reserved.
Driver design

Simplified schematic

Design for 10Gbit/sec operation.

Differential output: 5.6V

Rights reserved.
Cross sections

Mixed substrate
Photonic BiCMOS: Driver + Mach-Zehnder modulator

L. Zimmermann et al, ECOC, 2013
Conclusions

• Photonic BiCMOS first driver + MZM results
• Local SOI technology to reconcile BiCMOS and SOI

• Photonic BiCMOS for
 – High-performance SiPh
 – System integration
We acknowledge support by German Ministry of Research and Education (BMBF), projects:

SASER, RF2THzSiSoC, SILIMOD, PHOIBOS

EU-FP7-ICT-HELIOS/GALACTICO

Dieter Knoll, Andrzej Gajda, Stefan Lischke, Georg Winzer, Harald Richter, Bernd Heinemann, Karsten Voigt, Stefan Meister, Hanjo Rhee, Christoph Theiss, Ulrike Woggon, Bernd Tillack, Klaus Petermann