“More Package, Less Board - System Integration on Component and Wafer Level for More Performance on Less Space”

Steffen Kröhnert, Director of Technology, NANIUM S.A.
Abel Janeiro, Senior Design Engineer, NANIUM S.A.
More-than-Moore = Value Adding Packaging has Potential in Europe!

- Target: 20% of global semiconductor manufacturing back to Europe by 2020.
- Entire Supply Chain need to be considered, Packaging is an important part of it.
- Chip-Package-Board Co-Design and Co-Development essential for fast time-to-market and low cost.
- NANIUM, as largest Packaging Foundry in Europe:
 - More-than-Moore on 200mm and 300mm, Wafer Level System-in-Package (WLSiP)
 - 450mm PreAssy/ DieBond, Fan-In WLP, Fan-Out WLP
 - 450 x 450mm² Panel based Fan-Out WLP
Content

1. Short NANIUM Introduction

- 1.1 History, Location and Capacity
- 1.2 Technical Capabilities and Business Offers

2. Value Adding Packaging

- 2.1 Motivation for „More Package, Less Board“
- 2.2 „More-Moore“ and „More-than-Moore“ System Integration
- 2.3 SoC and SiP will Coexist
- 2.4 System-in-Package on Component Level (SiP) and Wafer Level (WLSiP)

3. Product Examples

- 3.1 E1: Multi Chip Package, Dual and Quad Face Down Package (xFD™)
- 3.2 E2: System-in-Package, Organic Laminated Substrate Based (SiP)
- 3.3 E3: System-in-Package, Fan-Out Wafer Level Packaging Based (WLSiP)

4. Summary and Conclusions
Content

1. Short NANIUM Introduction
 1.1 History, Location and Capacity
 1.2 Technical Capabilities and Business Offers

2. Value Adding Packaging
 2.1 Motivation for „More Package, Less Board“
 2.2 „More-Moore“ and „More-than-Moore“ System Integration
 2.3 SoC and SiP will Coexist
 2.4 System-in-Package on Component Level (SiP) and Wafer Level (WLSiP)

3. Product Examples
 3.1 E1: Multi Chip Package, Dual and Quad Face Down Package (xFD™)
 3.2 E2: System-in-Package, Organic Laminated Substrate Based (SiP)
 3.3 E3: System-in-Package, Fan-Out Wafer Level Packaging Based (WLSiP)

4. Summary and Conclusions
NANIUM was founded in February 2010.

We provide contract Assembly and Engineering Services for WLP, Packaging, Assembly & Test.
World-Class Facility @ West Coast of Europe
Largest Packaging Foundry/ OSAT in Europe

A state-of-the-art facility located in Vila do Conde, North of Porto, Portugal.

- 520 employees, thereof 140 Engineers
- 222,000 ft² clean room (20,600 m²)
- > $1B cumulated investment
- Current Capacity:
 - 4,000 wafer/ week – 300mm FI & FO
 - 2,000 kpcs/ week – BGA Components
 - 2,700 pcs/ week – SMT Modules

24/7 Operation
World-Class Facility @ West Coast of Europe
Largest Packaging Foundry/ OSAT in Europe
NANIUM’s Four Business Offers
All Under one Roof: Wafer Processing to Board Assembly

1- High Volume Packaging, Assembly & Test Services
- Organic Laminate Based BGA Packages
- More Complex Packages Like MCM, MCP and SiP
- Leadframe Packages
- SMT Board Assembly

2- High Volume 300mm WLP & Wafer Test Services
- RDL Processing
- Fan-In WLP / WLCSP
- Fan-Out WLP / eWLB
- Wafer Test
- Wafer Thinning
- Wafer Molding
- Wafer Bumping

3- Flexible Pilot Line for Packaging, Test & SMT
- Fast Prototype and Qualification Runs
- Production of Small Series
- Innovative Fast Quality Package Prototypes
- Flexible Technology Diversity Management
- Technology Transfer

4- Turnkey Engineering Services R&D, Laboratories & Consulting
- Package Development
- Test Engineering & Development
- Quality & Supply Chain Management
- Advisory Services
- Laboratories
Content

1. Short NANIUM Introduction
 - 1.1 History, Location and Capacity
 - 1.2 Technical Capabilities and Business Offers

2. Value Adding Packaging
 - 2.1 Motivation for „More Package, Less Board“
 - 2.2 „More-Moore“ and „More-than-Moore“ System Integration
 - 2.3 SoC and SiP will Coexist
 - 2.4 System-in-Package on Component Level (SiP) and Wafer Level (WLSiP)

3. Product Examples
 - 3.1 E1: Multi Chip Package, Dual and Quad Face Down Package (xFD™)
 - 3.2 E2: System-in-Package, Organic Laminated Substrate Based (SiP)
 - 3.3 E3: System-in-Package, Fan-Out Wafer Level Packaging Based (WLSiP)

4. Summary and Conclusions
Functionality Integration
More Package, Less Board

Smart Phone Assembly
(Driver for Technology and Volume)

Yesterday
- Sony-Ericsson
 - Xperia – X10
- PCB area to Phone area ≈ 90%
- P+M+C area to total phone area ≈ 18%

Today
- Apple
 - iPhone 5
- PCB area to Phone area ≈ 30%
- P+M+C area to total phone area ≈ 9%

- Wirebond
- BGA/ LGA Packages
- FlipChip BGA,
 - Stacked MCP
 - PoP

Source:
Phil Marcoux, PPM Associates 2012
Functionality Integration
More Package, Less Board

• „The Board is Moving Inside the Package“
 • Embedded passives and actives
 • Side-by-Side goes 3D assembly in package (stacking) & PoP
 • 2.5D Si/ Glass interposer reduce the need for organic HDI PCB

• „SMT is Moving Inside the Package“
 • Wirebond goes FC, micro-solder bumps and copper pillars
 • Discrete passives move closer to active die inside the package
 • System-in-Package, reduced number of packages
Functionality Integration
More Package, Less Board

• More Package ≠ More Packages, but larger, more complex packages
• Increasing Integration Density
• Less Standard, More Customized

• **Overall System Optimization**
 • Performance towards SoC
 • System Miniaturization
 • System Cost Reduction

• Enhance product differentiation with features not available in standard solutions
• Improved Reliability due to Less Components and Less Interconnects

"More Package“
= More Performance

"Less Board“
= Less Space

Source:
ON-Semiconductor 2013
Functionality Integration
More Package, Less Board

• Trend driven by
 • Performance needs
 • Form Factor needs
 • System Cost reduction

• Trend with „Winners“ and „Losers“ along the Supply and Value Chain

• Need is understood, but ecosystem is not yet ready for the change
 • Organizational Setup
 • System Thinking
 • Consequent Co-Design
 • Customer is the winner

Source: ON-Semiconductor 2013
Value Adding Packaging / More-than-Moore
The Role of Packaging is Changing

- Assembly & Packaging was simply needed to:
 - Protect the chip;
 - Get it into the tester;
 - Get it mounted to the board w/ available SMT;
 - Redistribution of the contacts due to the pitch gap die-to-board.

- System integration on package level adds value to the product:
 - SIP and finally SOP as complimentary, but also alternative integration technology compared to SOC.
Value Adding Packaging / More-than-Moore

The Role of Packaging is Changing
Value Adding Packaging / More-than-Moore

SOC and SIP will Coexist

- System-on-Chip (SOC) = “More Moore”
 - The effect of CMOS miniaturization
 - … and the increasing importance of power/heat dissipation

![Image showing node progression and power dissipations](image)

Source: ITRS Roadmap 2008
Value Adding Packaging / More-than-Moore
SOC and SIP will Coexist

e.g.
Cypress PSoC Technology Platform

PSoC = Programmable System-on-Chip

System-on-Chip is from **performance** and from **formfactor** point of view always the best solution

- Cost ?
- Time-to-Market ?
- Flexibility ?

Source: Cypress Semiconductor 2013
Value Adding Packaging / More-than-Moore
SOC and SIP will Coexist

In this communication product, PSoC technology reduced the BOM from 12 ICs to 3 ICs by integrating FSK detector, voltage monitoring, DTMF and ringtone generation.

With the PSoC Technology Platform you can:

Source: Cypress Semiconductor 2013
Value Adding Packaging / More-than-Moore

The Role of Packaging is Changing

The One Chip Problem – Custom IC costs continue to increase

- Increasing cost per tapeout drives down # tapeouts
- Increasing demand for another way to get custom hardware

Source: eSilicon 2012
Value Adding Packaging / More-than-Moore

The Role of Packaging is Changing

- **Single Chip SOC**
 - Containing 1 SOC
 - (assembled in Single Die Package)

- **Multi Chip SIP**
 - Containing >1 SOC + other dies/components
 - (assembled in more complex Multi Die Package)
Hybrid Package Assembly
Combination of Different Interconnect Technologies
Value Adding Packaging / More-than-Moore Package Level System Integration

- Why 3D and 2.5D Interposer compared to Organic HDI PCB?
 - Shorter interconnects between dies, less noise, more speed
 - Higher density, smaller footprint / Adoption to BGA pitch for PCB

Source: Phil Marcoux, PPM Associates 2012
Value Adding Packaging / More-than-Moore Package Level System Integration

- Why 3D and 2.5D Interposer compared to Organic HDI PCB?
 - RELIABILITY - The advantage of the “Reliability Pyramid”

Source: Phil Marcoux, PPM Associates 2012
Value Adding Packaging / More-than-Moore
Package Level ➔ Wafer Level System Integration

- Consumer Market / Mobile Applications are main driver of advanced packaging technology development

- How to handle the critical triad of packaging: “Performance, Form Factor and Cost”?

- The two general directions for packaging:

 | Driver: Cost, Performance, Miniaturization | Solution: Large Scale Panel, Batch Processing |
 | ➔ Wafer Level Packaging (WLCSP) |

 | Driver: More functionality on same or less space |
 | Solution: System Integration, „More than Moore“ |
 | ➔ System-in-Package (SIP) |
Value Adding Packaging / More-than-Moore

Package Level → Wafer Level System Integration

- Today the majority of SiP is realized using laminated organic substrate based packages (BGA and LGA);
- Need to close the gap to System-on-Chip (SoC) performance, where short connections between the functional areas are inherent.
Value Adding Packaging / More-than-Moore
Wafer Level System Integration

WLSiP
by eWLB
WLSiP enabled by eWLB
Wafer Level System Integration

The eWLB*) FO-WLP technology is based on:

1) BE wafer on a carrier with KGD’s (reconstituted Backend wafer);
2) Wafer Level Compression Molding;

*) eWLB (embedded Wafer Level Ball Grid Array) is patented by Infineon Technologies AG
WLSiP enabled by eWLB
Wafer Level System Integration

The eWLB FO-WLP technology is based on:

3) RDL using Thin Film Technology;
4) Wafer Level Pre-formed Bump Drop Process (Solder Ball Attach);
5) Wafer Level Component Marking and Singulation Process.

5x5m² chip in 8x8x0.8mm³ package
0.800mm package height w/ solder balls
183 solder spheres 0.300mm
0.230mm ball height, 0.500mm pitch,
Content

<table>
<thead>
<tr>
<th>1. Short NANIUM Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 History, Location and Capacity</td>
</tr>
<tr>
<td>1.2 Technical Capabilities and Business Offers</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Value Adding Packaging</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Motivation for „More Package, Less Board“</td>
</tr>
<tr>
<td>2.2 „More-Moore“ and „More-than-Moore“ System Integration</td>
</tr>
<tr>
<td>2.3 SoC and SiP will Coexist</td>
</tr>
<tr>
<td>2.4 System-in-Package on Component Level (SiP) and Wafer Level (WLSiP)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. Product Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 E1: Multi Chip Package, Dual and Quad Face Down Package (xFD™)</td>
</tr>
<tr>
<td>3.2 E2: System-in-Package, Organic Laminated Substrate Based (SiP)</td>
</tr>
<tr>
<td>3.3 E3: System-in-Package, Fan-Out Wafer Level Packaging Based (WLSiP)</td>
</tr>
</tbody>
</table>

| 4. Summary and Conclusions |
E1: Multi Chip Package
Organic Laminated Substrate Based

Dual-Face-Down Multichip Package

- xFD™ Technology is Trademark of Invensas Corporation

DFD is ...
- Denser: At least 30% thinner than conventional MCP;
- Faster: Due to ultra-short and separated interconnects;
- Cheaper: Single die level performance in a multichip package;
- Lower material cost (no RDL needed, shorter Au wire);
- Using standard BGA assembly manufacturing line.

Available

- 2012: DFD w/ 1Gb DDR3
- 2013: DFD low profile w/ 1Gb DDR3, DFD w/ 2Gb DDR3, DFD w/ 1Gb DDR3
- 2014: QFD w/ 1Gb DDR3
E1: Multi Chip Package
Organic Laminated Substrate Based

Single Die Package ("SDP")
60 – 96 ball configurations
(Tessera invention used by DDR2/DDR3)

Dual Face Down ("DFD")
104 – 112 ball configurations

Quad Face Down ("QFD")
243 ball configuration

Source: Invensas Corp 2012
E1: Multi Chip Package
Organic Laminated Substrate Based

Component maker benefits:
- Lowest cost way to assemble DRAM die
 - Cost/DRAM die assembled is lower than other methods including single die
- Test yields better than other DDPs
 - Symmetric performance of both die in package

System OEM benefits:
- Avoids need for costly HDI PCBs for system use
 - Design studies show non-HDI PCBs viable for thin form-factor clients when using xFD
- Reduces memory system footprint on PCB
 - Design studies show smaller PCB footprints for solder-down memory application in thin form-factor clients
 - Allows larger components on PCB for non-HDI deployment

Source: Invensas Corp 2012
E1: Multi Chip Package
Organic Laminated Substrate Based

Dual Inline Memory Module (DIMM) Solder-down on System Board

Original Design (3-6-3 HDI PCB)

Source: Invensas Corp 2012
E1: Multi Chip Package
Organic Laminated Substrate Based

Invensas DFD:
Dual Channel Single Rank (non-HDI PCB)
E1: Multi Chip Package
Organic Laminated Substrate Based

Invensas QFD:
Dual Channel Dual Rank
(non-HDI vs. HDI PCB)

Quad Die DRAM Packages:
Quad 16 bit organization, Top and Bottom Placement on PCB

Source:
Invensas Corp 2012
E1: Multi Chip Package
Organic Laminated Substrate Based

- Reference Platform used 3-6-3 HDI PCB technology
 - Cost is X
 - *HDI PCB prototyping takes Y weeks*

- Non-HDI, plated through hole via 12 layer PCB achievable using DFD/QFD
 - Cost is $\frac{1}{4}X$
 - *12 layer non-HDI PCB prototyping takes $\frac{1}{4}$ the time for HDI*

Lower cost, lower schedule risk using non-HDI PCB

Source:
Invensas Corp 2012
E2: System-in-Package
Organic Laminated Substrate Based

- Set Top Box for Digital TV SiP 27x27mm²

Typ A – BGA Package
E2: System-in-Package
Organic Laminated Substrate Based

Controller die – (1x) flip-chip:
Die size: 8.0x8.3mm², Number of bumps: 900

Package Size: 27x27mm²

Memory dies – (2x) face-up w/ wire bond:
2x 2G DDR2 (x16 org), Die size: 5.5x7.6mm²
E2: System-in-Package
Organic Laminated Substrate Based

Flash die - (1x) face-up wire bond: Die size: 6.4x 8.3mm²
0201 SMD Passives - (23x) Component size: 0.6x0.3mm²

Dimensional Design Characteristics:
- HDI PCB technology type II
- Trace-to-trace pitch 36µm (required under FlipChip)
- Route technology 18/18µm (15/15µm available in volume)
- Via Drill/Lands 60µm/120µm
- 4 Layers substrate with total thickness 1.0mm (2 signal + 2 plan layers)
- Final component thickness with solder balls 2.5mm
E2: System-in-Package
Organic Laminated Substrate Based

- Set Top Box for Digital TV non-SiP
 Required Board Space 50x60 mm²

Dimensional Design characteristics:
- Trace-to-trace pitch 150µm
- Route technology 75/75µm
- Via Drill/Lands 150µm/300µm
- 2 Layers substrate

BGA Pkg Controller (Flip-Chip):
- Size: 27x27mm²
- Die size: 8.0x8.3mm²
- Number of Solder Balls: ~600
- Ball Pitch: 1000µm

BGA Flash Package:
- Size: 8x10mm²
- Die size: 6.4x 8.3mm²
- Number of Solder Balls: 64
- Ball Pitch: 800µm

BGA Memory Package:
- Size: 8x12.5mm²
- Die Size: 7.6x9.2mm²
- Die size:5.5x7.6mm²
- Number of Solder Balls: 84
- Ball Pitch: 800µm
E2: System-in-Package
Organic Laminated Substrate Based

- Set Top Box for Digital TV **SiP** 27x27mm²
- Set Top Box for Digital TV **non-SiP** Required Board Space 50x60 mm²

Form Factor = \(\frac{27 \times 27}{50 \times 60} = 24.3\% \)
> 4x area would be needed for non-SiP
E3: System-in-Package
Wafer Level Based / eWLB Technology (WLSiP)

- Medical Application WLSiP (eWLB) 5.2x7.3 mm²

Die U5 – Recon, RDL, Die size: 3.2x3.2mm²
Number of pads to be connected: 56

Die U1 – Recon, RDL, Die size: 3.8x1.6mm²
Number of pads to be connected: 33

PICS (Passive Integrated Connecting Substrate)
- (7x) Component size: 1.160x0.660mm²

Die U6 – Recon, RDL, Die size: 1.5x0.5mm²
Number of pads to be connected: 6

Dimensional Design Characteristics:
- 56 Connected balls
- LGA landing pad pitch 0.5mm
- Trace-to-trace pitch 40µm
- Route technology 20/20µm
- Via Opening 20µm
- 1 RDL (total 25µm w/ Dielectric layers)
- Final component thickness 0.200mm
E3: System-in-Package
Wafer Level Based / eWLB Technology (WLSiP)

- Medical Application non-WLSiP (eWLB)
 Required Board Space 8x10.5 mm²

U5 - BGA FO WLP (eWLB):
- Size: 5.0x5.5mm²
- Die size: 3.2x3.2mm²
- Number of Solder Balls: 56
 (Matrix: 7x8 balls)
- Ball Pitch: 500µm

U1 - BGA FO WLP (eWLB):
- Size: 4.5x3.0mm²
- Die size: 3.8x1.6mm²
- Number of Solder Balls: 36
 (Matrix: 8x5 balls)
- Ball Pitch: 500µm

U6 – BGA FO WLP (eWLB):
- Size: 2.0x1.5mm²
- Die Size: 1.5x0.5mm²
- Nr. of Solder Pads: 6
 (Matrix: 2x3)
- Ball Pitch: 500µm

Dimensional Design Characteristics:
- Trace-to-trace pitch 150µm
- Route technology 75/75µm
- Via Drill/Lands 150µm/300µm
- 1 Layer PCB

PICS ➔ 0201 SMD Passives
E3: System-in-Package

Wafer Level Based / eWLB Technology (WLSiP)

- Medical Application **WLSiP** (eWLB) 5.2x7.3 mm²
- Medical Application **non-WLSiP** Required Board Space 8x10.5 mm²

Form Factor = \(\frac{5.2 \times 7.3}{8 \times 10.5} = 45.2\% \)

> 2x area would be needed for non-WLSiP
Content

1. Short NANIUM Introduction
 - 1.1 History, Location and Capacity
 - 1.2 Technical Capabilities and Business Offers

2. Value Adding Packaging
 - 2.1 Motivation for „More Package, Less Board“
 - 2.2 „More-Moore“ and „More-than-Moore“ System Integration
 - 2.3 SoC and SiP will Coexist
 - 2.4 System-in-Package on Component Level (SiP) and Wafer Level (WLSiP)

3. Product Examples
 - 3.1 E1: Multi Chip Package, Dual and Quad Face Down Package (xFD™)
 - 3.2 E2: System-in-Package, Organic Laminated Substrate Based (SiP)
 - 3.3 E3: System-in-Package, Fan-Out Wafer Level Packaging Based (WLSiP)

4. Summary and Conclusions
Summary & Conclusions

- The role of Packaging is changing significantly
- Value adding Packaging by integration of product functionality
- Performance, foot print and system cost are main drivers
- Single Chip SoC moves to Multi Chip SiP
- SoC in single die package and SiP in multi die package will coexist
- Many SiP will have one or even more SoC inside
- „The Board is Moving Inside the Package“
- „SMT is moving inside the Package“
- 3 Product Examples have been shown: 2x-4x Reduction of required board space was achieved by usage of SiP / WLSiP
- More Package, Less Board for More Performance at Less Space
- The whole System has to be considered, Co-Design is essential
Questions?

Visit us at Booth #2.050
Silicon Saxony Pavilion