Evaluation of Technology Options by Lithography Simulation

Andreas Erdmann
Fraunhofer IISB, Erlangen, Germany

Semicon Europe, Dresden, October 12, 2011
• Introduction:
 Resolution limits of optical and EUV lithography

• ArF immersion/double patterning:
 process interactions in double patterning

• EUV lithography:
 impact of multilayer mask defects

• Lithography beyond semiconductor manufacturing:
 source & mask optimization for mask aligners

• Conclusions and Outlook
Introduction: Resolution Limit

ArF Immersion Lithography: Single Patterning

- $k_1 > 0.7$: “perfect” imaging
- $0.25 < k_1 \leq 0.7$: optical proximity effects: OPC/SMO required
- $k_1 = 0.25$: theoretical limit of half pitch (HP) for single exposure

$CD = k_1 \frac{\lambda}{NA}$

$\lambda=193\text{nm}, NA=1.35$, circular illum. $\sigma=0.9$
Introduction: Resolution Limit

ArF Immersion Lithography: Single & Double Patterning

single patterning exposure

- $k_1 \leq 0.25$ impossible

double patterning exposure 1

- $k_1 = 0.14$ possible → 20nm features
- requires extensive SMO, two masks and additional process steps
- manufacturable but (very) expensive

double patterning exposure 2
EUV Lithography: Single Patterning

- $\lambda = 13.5\text{nm}$, $\text{NA} = 0.32$, circular illum. $\sigma = 0.7$

- $k_1 > 0.75$, 32nm: no OPC required
- $k_1 > 0.45$, 19nm: doable with standard OPC
- $k_1 \leq 0.24$, 17nm: requires more aggressive OPC/SMO
Outline

• Introduction:
 Resolution limits of optical and EUV lithography

• ArF immersion/double patterning:
 process interactions in double patterning

• EUV lithography:
 impact of multilayer mask defects

• Lithography beyond semiconductor manufacturing:
 source & mask optimization for mask aligners

• Conclusions and Outlook
<table>
<thead>
<tr>
<th>Challenges</th>
<th>Support by Full Physical Lithography Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process Control</td>
<td>Parameter variation: source shape fidelity, laser bandwidth, aberrations, mask errors and mask topography induced phase/aberration effects, resist processing, enhancement of metrology</td>
</tr>
<tr>
<td>Manufacturable Source & Mask Optimization</td>
<td>Verification of less accurate OPC-like models: mask topography effects, full physical resist modeling, rigorous SMO for small areas</td>
</tr>
<tr>
<td>Process Interactions</td>
<td>Investigation of wafer topography effects, resist/material interactions</td>
</tr>
<tr>
<td>Costs</td>
<td>Complementary to expensive, time consuming experiments</td>
</tr>
</tbody>
</table>
Process Interactions in Double Patterning

Crossed Lines: Contact Formation Using Litho-Curing-Litho-Etch

H. Nakamura et al. J. Micro/Nanolith.MEMS MOEMS, 2008, 7, 043001

mask:
AttPSM with 45nm lines/spaces

stepper:
ArF, NA=1.25, y-pol./TE,
dipole illumination:
σ=0.76/0.89,
opening angle 35°

resist:
DOW electronic materials, thickness 100nm

wafer:
Bilayer BARC on Si

spin-on resist 1
lithography 1
cure and spin-on resist 2
lithography 2
dose = 21.3mJ/cm2

SEM pictures with courtesy of Dow Electronic Materials

43.98nm / 43.12nm
Impact of incomplete Cure of Litho 1 Resist

Curing is modeled by an increase of the activation energy of the cured resist E_{aF} compared to that of the litho 2 resist E_{a2}.

Imperfect curing causes barrel shaped contact holes.
Impact of Wafer Topography during Litho 2 Exposure

- Effect is linear in Δn
- Material specifications have to be defined for critical pitches
- Consider critical pitch in the design split!

Process Interactions in Double Patterning

Impact of Wafer Topography during Litho 2 Exposure

- litho 1: 45nm lines; variable pitch
- litho 2: 45nm lines; 90nm pitch

$\Delta n = 0.03$ (difference between refractive indices of cured resist and litho 2 resist)
Acid Diffusion between Different resist Materials

- Acid diffusion length in cured resist: d_{A1}
- Acid diffusion length in litho 2 resist: d_{A2}

- $d_{A1/2} = 10/4 \text{ nm}$
- $d_{A1/2} = 10/12 \text{ nm}$
- $d_{A1/2} = 10/20 \text{ nm}$

- Acid depletion close to litho1 line due to diffusion from resist 2 to cured resist 1, thus becoming unavailable for deprotection reaction.

- Resist interaction effects explain footing which was experimentally observed in some resist formulations.

SEM pictures with courtesy of Dow Electronic Materials.

Lithography Simulation

Semicon Europe, October 12, 2011
• Introduction:
 Resolution limits of optical and EUV lithography

• ArF immersion/double patterning:
 process interactions in double patterning

• EUV lithography:
 impact of multilayer mask defects

• Lithography beyond semiconductor manufacturing:
 source & mask optimization for mask aligners

• Conclusions and Outlook
<table>
<thead>
<tr>
<th>Challenges</th>
<th>Support by Full Physical Lithography Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Power</td>
<td>-*</td>
</tr>
<tr>
<td>Mask Infrastructure &</td>
<td>Mask defect inspection, printability and repair</td>
</tr>
<tr>
<td>Defectivity</td>
<td>simulations, mask topography induced</td>
</tr>
<tr>
<td></td>
<td>phase/aberration effects, assist feature</td>
</tr>
<tr>
<td></td>
<td>strategies</td>
</tr>
<tr>
<td>Resist/Processing</td>
<td>Study of the impact of different blur effects:</td>
</tr>
<tr>
<td></td>
<td>flare,</td>
</tr>
<tr>
<td></td>
<td>secondary electron scattering, acid/quencher</td>
</tr>
<tr>
<td></td>
<td>diffusion, mesoscopic simulations of LER</td>
</tr>
<tr>
<td>Costs</td>
<td>Complementary to expensive, time consuming</td>
</tr>
<tr>
<td></td>
<td>experiments</td>
</tr>
</tbody>
</table>

* There are strong activities on EUV source modeling outside the “standard” lithography simulation community
Impact of Multilayer Mask Defects

40nm Dense Lines Printing without/with Defect

mask

image

resist

no defect

\[\lambda = 13.5\text{nm}, \quad \text{NA} = 0.25, \quad \text{circular illum.} \quad \sigma = 0.5 \]

calibrated resist model

defect

- \(w_{\text{top}} = 80\text{nm} \)
- \(h_{\text{top}} = 2\text{nm} \)
- \(w_{\text{bot}} = 50\text{nm} \)
- \(h_{\text{bot}} = 50\text{nm} \)
Impact of Multilayer Mask Defects

Description of Defects

- bump defect
- pit defect

(2D) Gaussian deformation at top/bottom:

\[h_{\text{top/bot}} \] – defect height
\[w_{\text{top/bot}} \] – defect size (FWHM)

- introduced during mask fabrication
- shape depends on multilayer deposition process
- difficult to find and to repair
Impact of Multilayer Mask Defects

Defect Images without absorber versus Defocus

- bump defect
 - \(h_{\text{top}} = 2\,\text{nm}\)
 - \(w_{\text{top}} = 75\,\text{nm}\)
 - \(h_{\text{bot}} = 30\,\text{nm}\)
 - \(w_{\text{top}} = 30\,\text{nm}\)

- pit defect
 - \(h_{\text{top}} = -2\,\text{nm}\)
 - \(w_{\text{top}} = 100\,\text{nm}\)
 - \(h_{\text{bot}} = -2\,\text{nm}\)
 - \(w_{\text{top}} = 100\,\text{nm}\)

- defects cause intensity loss in defect area
- asymmetric printing through focus
- bumps and pits print most severe in opposite focus directions
Impact of Multilayer Mask Defects

Comparison with Experiment

pit

bump

defocus

SEMs from: R. Jockheere, IMEC
Impact of Multilayer Mask Defects

Modeling of Present Repair Strategy

Mask layout Aerial image Resist profile

- Good repair at best focus
- How about through-focus?

Mask: 40nm dense L/S
Optics: NA=0.25, λ=13.6nm, σ=0.5
Resist: calibrated to IMEC data
Defect: top 2/80nm, bottom: 10/10nm
Outline

• Introduction:
 Resolution limits of optical and EUV lithography

• ArF immersion/double patterning:
 process interactions in double patterning

• EUV lithography:
 impact of multilayer mask defects

• Lithography beyond semiconductor manufacturing:
 source & mask optimization for mask aligners

• Conclusions and Outlook
Lithography beyond Semiconductor Manufacturing

<table>
<thead>
<tr>
<th>Challenges</th>
<th>Support by Full Physical Lithography Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diversity of Techniques</td>
<td>Comparison of projection and proximity printing, interference lithography, direct optical and e-beam write, near field methods, …</td>
</tr>
<tr>
<td>Resolution and other Limitations of various techniques</td>
<td>Source & mask optimization for mask aligners, exploration of Talbot imaging, various near field methods and optical nonlinearities (two-photon processes, stimulated/depleted polymerization)</td>
</tr>
<tr>
<td>Diversity of applications, materials, and special Requirements</td>
<td>Modeling of thick resist effects, gray tone techniques, coupling between lithography and optical device simulation for waveguide structures and nano-photonics</td>
</tr>
<tr>
<td>Costs</td>
<td>Complementary to expensive, time consuming experiments</td>
</tr>
</tbody>
</table>
Source & Mask Optimization for Mask Aligners

Customized Illumination Geometry: SUSS Microoptics Exposure Optics

Aligner pictures and SEMs from: R. Völkel, SUSS MicroOptics
Conclusions and Outlook

Full physical lithography simulation can be used to:

• Compare technology options
• Investigate impacts of device/process parameters
• Optimize existing and future processes
• Explore resolution limits of emerging new techniques

Some future trends:

• Diversity of technology options, related physical/chemical effects and application specific process criteria requires more flexible and open simulation infrastructure
• Combination of simulation and metrology will enable new possibilities for process control
• Combination of predictive simulation and advanced optimization techniques helps to push the limits of micro- and nanopatterning techniques
Acknowledgements

• All members of the Fraunhofer IISB Lithography Simulation team

• Supporting Material and valuable discussions Pete Trefonas (DOW Electronic Materials), Jürgen Fuhrmann (Weierstrass Institute), Rik Jonckheere (IMEC), Tristan Bret (Zeiss SMS), Michael Hornung, Reinhard Völkel (Süss Microtec), Uli Hofmann, Nezi Ünal (GenIsys)

• Funding from European Commission (FP7), German BMBF, and Bavarian Research Foundation

• All simulations were performed with Dr.LiTHO: www.drlitho.com